Infinite quasi-injective groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of principally quasi-injective modules and quasiprincipally injective modules

LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...

متن کامل

Fp-injective and Weakly Quasi-frobenius Rings

The classes of FP -injective and weakly quasi-Frobenius rings are investigated. The properties for both classes of rings are closely linked with embedding of finitely presented modules in fp-flat and free modules respectively. Using these properties, we characterize the classes of coherent CF and FGF-rings. Moreover, it is proved that the group ring R(G) is FP -injective (weakly quasi-Frobenius...

متن کامل

Injective Linear Cellular Automata and Sofic Groups

Let V be a finite-dimensional vector space over a field K and let G be a sofic group. We show that every injective linear cellular automaton τ : V G → V G is surjective. As an application, we obtain a new proof of the stable finiteness of group rings of sofic groups, a result previously established by G. Elek and A. Szabó using different methods.

متن کامل

Infinite Groups

Most interesting groups arise as a group of transformations. For example the set of “rigid motions” of 2-dimensional space R forms a group denoted Isom(R). There are three kinds of transformations: reflection about a line, rotation about a point, and translation in a direction. These form a group under composition (i.e., do one transformation and then do the other). For example, the composition...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1988

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500003370